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ABSTRACT 

A parametric method based on spatial filter 
techniques (beamforming) is proposed to estimate the 
propagation speed of acoustic waves. The propagation 
speed estimate is analyzed for the case of narrowband 
signals and compared to the maximum likelihood estimate 
(MLE) of the propagation speed. It is shown that for an 
array of 3 sensors our estimate coincides with the ML 
estimate but its performance analysis is simpler and its 
computational cost is much more reduced. The proposed 
estimate is also applied to the wideband waves 
propagating along a car exhaust. It is shown that the 
signal-to-noise ratio and the magnitude of the relative 
aperture (distance between the array sensors respect to the 
wavelength) for each frequency could limit the good 
performance of the speed estimator. Good results have 
been achieved when these limitations have been taken into 
account. 

1. PROBLEM STATEMENT 

There exist two low frequency wideband acoustic 
waves propagating along a car exhaust when the engine is 
working, the forward one generated by the engine, and the 
backward one originated from the misadjustment of the 
acoustic impedance at the muffler input. Both waves are 
cyclic and their characteristics depend basically on the 
number of revolutions-per-minute the car engine is 
rotating at. The main characteristics of the acoustic waves 
to be taken into account for a perfect separation of their 
waveforms are the direction of arrival and the propagation 
speed. The first one is perfectly known: -90" for the 
forward wave and 90" for the backward one respect to the 
exhaust pipe orthogonal direction. The second one is only 
approximately known because it depends on the uncertain 
temperature value, the stability of the car engine, and other 
factors. 
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As it is exp1aine:d in [l], the separation of the 
forward and the backward acoustic waves propagating 
along the exhaust is usefiil in several applications, and a 
good estimate of the speeld propagation is needed. On the 
other hand, this parameteir is fundamental for obtaining a 
better knowledge of the characteristics of the engine at 
work. 

The estimation of the acoustic propagation speed 
is a relatively new problem but the solutions to it are well 
known because it is basically equivalent to the direction- 
of-arrival finding. Both problems imply to estimate the 
steering vector of the coriesponding plane waves noting 
that in our case the signals are fully correllated. There 
exists also in our applicaition a severe limitation on the 
number of sensors, mainly due to the non-linear 
propagation of the waves if the array aperture is large. For 
this reason, four sensors are used as a practical maximum 
and the distance between them is under 0.1 m. 

2. PROP0S:ED TECHNIQUE 

The technique which is proposed is a parametric 
method to estimate the propagation speed in the case that a 
limitation in the number of sensors and high correlation 
between signals is given. Suppose there are two 
narrowband acoustic waves propagating along the pipe, 
one in the forward sense and the other in the backward 
one. If we use 3 sensors in order to estimate the 
propagation speed, we h,ave, at the sensor outputs, the 
vector 

x(t) = A(c,)s(t) + n(t) (1) 

where x(t) = [xdt), x&), M)lT, A(cJ = WO), a(-c,)l is 
the steering matrix whose columns are defined below, and 
s(r )  = [s~t),sb(f)]' is the signal vector, being sxt) the 
forward wave and sb(t) the backward one. The vector n(t) 
represents the noise at the sensor outputs and its 
components are zero-mean, i.i.d. random variables. 

The steering vector of the forward signal is 



where (.)H means conjugate transpose, U is the wave 
pulsation, co its propagation speed and d is the distance 
between sensors. Its direction of arrival is -90", and the 
steering vector of the backward wave is a(-c,), being its 
angle of arrival 90'. Due to this similarity between the 
steering vectors - and the limitations pointed above - we 
can think in a parametric method in order to estimate the 
propagation speed: there are two waves but a unique 
parameter to find. 

The proposed estimate of the propagation speed is 

where a:(c) is the output power of a Delay-and-Sum 
(DS) beamformer [2] which has been designed to cancel 
the forward and the backward waves supposing that these 
waves are propagating at c m/s. 

The DS beamformer tries to cancel the signals, so 
the weight vector must follow 

where 0 is a (2x1) vector of zeros. We have to impose 
another condition in order to obtain a non-trivial solution. 
This condition is I I w ~ ~ ~  = 1; in this way we assure that the 
noise gain is independent of the value of c used in the 
design. Under these assumptions we obtain the following 
expression for the weight vector 

AH(c)w = 0 (4) 

with U, d and c defined above. The beamformer output is 
y(c) = w (c)x (6 )  

The output vector y(t) = Iy(t,), fitl), -7 y(fhl-Jl has 
contributions from the noise input filtered by the 
beamformer and from a residue of the signals sxt )  and 
sb(t). When c, the propagation speed used in the 
beamformer design, and co, the true speed, are the same, 
the signal term is totally canceled. If we work with the 
output power, under the assumption of signals 
uncorrelated with noise, the mean power of the 
beamformer output can be expressed as 

2(c0s(od/c0)-c0s(od/c))~ 
= q y y 7  = 

(0; + 0: + 2 .  % { p e x p { - j 2 w d i  CO I})+ 0; 
2 + cos(2od I c )  

(7) 

where and 06' are the power of the forward and the 

backward waves respectively, and p= E[sXt)s<(t)] is the 
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Figure 1. Inverse of the mean output power a:(c) 

for dA=1/5, c= 623 m/s and (SN)  = 30 dB. Units are 
linear. 

cross-correlation coefficient between signals. An example 
of this kind of curves is displayed in figure 1, where the 
inverse of a:(c) is represented and co is estimated as its 
maximum value. 

The practical procedure to build up the 
propagation speed estimator stated in (3) would be simple: 
we would design K beamformers in a range of values 
where we knew it was probable to be co, and would choose 
the Z0 as the one that minimized the total output power of 
the beamformer. 

However, this procedure can be improved by 
means of a Newton method [3] for searching the 
minimum. The convergence of the method is achieved in 5 
or 6 steps as maximum if the derivatives of a; (c) respect 
to c are used. An example of the search for the minimum 
procedure is shown in figure 2 in comparison with the 
whole function a:(c) in the range of 400 to 750 m/s. 

3. COMPARISON WITH OTHER 
ESTIMATORS 

The maximum likelihood estimate (MLE) of the 
propagation speed under the assumption of stationary 
Gaussian white noise and signal and noise uncorrelated is 
given by [4] 

Z, = arg min Tr P i  (c)R,] 
{ c  I 

where R,is the sample covariance matrix and P,'(c) is 
the orthogonal projection matrix onto the null space of 
AH(c), i.e., 
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Figure 2. Example of the estimation of the 
propagation speed applying Newton method to 
o;(c) .  The convergence is achieved in 5 steps for 
c=534 m/s with an initial guess of 408 m/s. 

P ~ ( c ) = I - A ( c ) A ' ( c ) = I - A [ ( A ~ A ) - ~ A ~ ]  (9) 

where A'(c) is the Moore-Penrose pseudo-inverse of A(c). 
The interpretation of the MLE is that x(t) is projected onto 
a subspace orthogonal to the signals supposed to be 
arriving to the array. Then a power measurement, the trace 
of (P,'R,), is evaluated. The energy should be smallest 
when the projector removes all the true signal 
components, i.e., when c = cw 

If the array is composed by 3 sensors, the 
orthogonal subspace to the forward and backward waves 
of the pipe is formed by a unique vector. This vector 
builds up the projector PAL(c) and its main characteristics 
are to be orthogonal to the steering matrix, A(c), and to 
have unit norm. These conditions are the ones we impose 
to the weight vector w(c) of the DS beamformer we use to 
estimate the propagation speed of the waves by the 
proposed method. In fact, we estimate co as the value that 
minimizes the beamformer output power but it could also 
be seen as the value that minimizes the projection of the 
covariance matrix Rxonto the unitary vector w. m e n  
w(c) belongs to the orthogonal subspace of the true 
waveforms, the signal components are suppressed and 
only the noise component remains. 

Therefore we can conclude that the estimator 
proposed in (3) is the ML estimate of the propagation 
speed when the number of sensors of the array is 3. If the 
number of sensors is 4 or 5 - in our application we have 
stated that the aperture of the array should be small so 
supposing much more sensors is nonsense - the MLE 
makes the projection of R, onto the whole orthogonal 

:: 0 1  I 

c (m/s) 
400 450 500 550 600 650 700 750 

Figure 3. Comparison between the MLE and our 
estimate for 4 sensors aind 64 samples. The true 
propagation speed is 535 m/s and the (S/N) = 30 dB. 
The ML estimates 533 nn/s and our method does 539 
m/s. The inverse of the output power is represented 
and units are linear. 

subspace to the signal components, meanwhile our 
estimate projects the covariance matrix onto ;a subspace 
formed by a unique vector, w(c), being w a vector 
belonging to the same orthogonal subspace. The 
difference between both estimates is null in theory, but in 
practice the effect of a finite number of samples and the 
addition of noise slightly worsens the performance of our 
estimate in comparison to the ML estimator. 

An example of the influence of the number of 
samples is shown in figure 3 where the number of sensors 
is 4. 

4. BROADBAND APPLICATION 

The application of the speed estimator to the 
broadband case implies to make the Fourier Transform of 
the signals and to apply the narrowband estimator for each 
frequency [4]. The propagation speed estimate is 

In fact, this speed estimator is not valid for all the 
frequencies because the equation expressed above 
supposes the signal and the noise to be uncorrelated. This 
is true if we consider the theoretic mean output power (7), 
but in practice, there is a finite number of samples and we 
have to work with an estimate of the mean output power, 
3;. 
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Figure 4. Inverse of the estimated mean output 
power 8; and inverse of the theoretic mean output 

power o;(c) for a frequency whose dA. E (0.004, 
0.008) and (9") = 50 dB. The estimated value of eo is 
699 m/s and the true value is 623 m/s. Units are 
linear. 

For a finite number of samples, when the DS 
beamformer is used to detect a signal, the output signal 
power is much larger than the covariance between signal 
and noise and this last term is supposed to be zero. 
However when we pretend to cancel the signal, this term is 
comparable to the noise power and can introduce an error 
in the speed estimator shifting the minimum of 2; to 
another e different from eo. The complete expression of 
the estimated mean output power of the beamformer is 

a: (e) + w (e)( A(co )sn + us (co ))w(c) 
It can be shown that the perturbation introduced 

in 8; by the cross-covariance between signal and noise is 
not negligible depending on the range of the relative 
aperture, dA, for each frequency, and on the signal-to- 
noise ratio (SNR) at the beamformer input. For example, 
when the relative aperture is very small, the curve of the 
mean output power o:(c) is nearly flat around e,, and the 
cross-covariance term has a large influence as it can be 
seen in figure 4. On the other hand, when the SNR is very 
small, the signal power of both waves is comparable to the 
noise power, the mean output power 0; is comparable to 
the second term of (1 1) and consequently the minimum of 
8; is not achieved at cg. 

Therefore, the application of the propagation 
meed estimate to broadband acoustic waves must take into 

account the expression of the mean output power estimate 
in (11). For an appropriate use of our method it is 
necessary to establish some criteria to eliminate those low 
frequencies whose relative aperture is very small, and 
those frequencies where the SNR is not large enough. 
After this, we assure that 8; is a good estimate of 0; 

and consequently to is a good estimate of eo. Good results 
have been achieved when the broadband propagation 
speed estimate (10) has been applied to acoustic waves 
generated by car engines. 

5. CONCLUSIONS 

We have formulated a new parametric estimate of 
the propagation speed of acoustic waves based on a spatial 
filtering technique (DS beamformer). We have 
demonstrated that for a small number of sensors scenario 
the performance of the new estimator is similar to the 
MLE, and it coincides with the MLE when the array has 
only 3 sensors. 

We have also extended the proposed method to 
the case of wideband signals. Under certain conditions of 
relative aperture and signal-to-noise ratio for every 
frequency which contributes to the estimate, we can use 
the new method in broadband applications as it is the case 
of the forward and backward wave propagating along a car 
exhaust. 
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