Wave reflections from duct terminations
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The reflection coefficients and inertial end corrections of several duct terminations, including finite
length duct extensions perpendicular to an infinite wall, as well as at a number of angles, curved
interface surfaces, and annular cavities, are determined and analyzed in the absence of flow by
employing the boundary element method. Predictions for the classical unflanged and flanged
circular ducts show good agreement with analytical and computational results available in the
literature. The predictions for curved interface surfadedimouth or horhare also consistent with

the available experimental data. In view of its high reflection coefficient, the duct termination with
an annular cavity may be suggested for the suppression of noise radiation in a specific frequency
band or for an effective wave reflection from the termination. 2@01 Acoustical Society of
America. [DOI: 10.1121/1.1348298

PACS numbers: 43.20.MMANN]

I. INTRODUCTION amplitudes in the duct. They implemented a rational function
Part of the acoustic wave reaching a duct exit is reflecte _p_prOX|mat|on to get the expressions for the reflection coef-
icient and end correction of the flanged and unflanged ducts.

back to the source and the remainder radiates into the Su,r&ndos’ and Peterset al® included the effect of duct wall

roundings, presenting a coupled phenomenon between t}%ﬁickness on the reflection coefficient and end correction.

sqund propagation in the .dUCt and ex}e_rnal sound ra_d@Uon aIIheir studies have demonstrated that, as the thickness of the
this boundary. The reflection and radiation characteristics de

pend strongly on the geometry of duct termination. Thus, th duct wall is increased, these two quantities vary between the

. - . R Simits of the unflanged duct and infinite flanged duct at lower
reflection coefficient amplitude and the inertial end correc- , .
Helmholtz numbers. Ando’s work has been reconsidered

tion (or the complex reflection coefficiendf duct termina- later by Bernard and Denard® Peterset al? also experi-

tion are the important parameters for the complete acoust'r(':nentally investigated the reflection coefficient and end cor-
analysis of duct system.

For an infinite circular duct without flange, Levine and rection of a duct terminated by a horn with a radius of cur-

. . L vature twice the duct diameter. Their measurements revealed
Schwinget presented an elaborate analytical derivation for .. . ) o .
(?/a=2.3 for lowH, and an increasing/a with increasingH

the reflection coefficient and end correction in the absence Qfor H<03

mean flow. While the numerical results were given as a : . : : . .
function of Helmholtz numbetd =ka, the limiting value of While the_forego!ng stgdles have prov@ed qurmgpon
the end corrections was determined to bé/a=0.6133 as for some baS|c. conflgurat|ons, there' remains a significant
H—0, with k being the wave number and the duct neeq to determine the reflection coefflc!ent. and the end cor-
radiué. Daviest al? provided empirical fits to end correc- rection for a number .Of Othef duct terml_natl_ons that are fre-
tion of Ref. 1 ass/a=0.6133—0.11682 for H<05 and quently encountered in practice. The objective of the pr_esent
S/a=0.6393—0 1104 for 0.5<H<2. study is then to calculate gnd_ analyze th(_ase t_w_o guantities for
For a circular duct with an infinite rigid flange, achosgn set of ducF terminations, including f|n|.te—length duct
Rayleight obtained an approximate value of the end Correc_extensmns(perpend|cu_lar as well as "?It an obhquc_e angle to
tion as&/a= 0.824 22, while Danieflprovided the bounds as the yyalb, bellmouthed interfaces, and interfaces with annular
0.8214k 6/a<0.82168 at zero frequency. This estimatecaV'tles' . . .
was later recalculated by Nomuea al® as 5/a=0.8217, by . Following the IntrpducUon, SeF:. I proy@es the fo'rmu-
Kergomard and Gardiaas sla=0.26153r=0.821 62, and lation for the calculation of reflection coefficient amplitude

by Norris and Sherfgas 8/a=0.82159. Nomurat al® used and inertial end correction of duct termination, and Sec. IlI

Weber—Schafheitlin integrals and Jacobi polynomials to degevelops a numerical approach based on the sub(_JIo_mam
. L ; . “boundary element method. The results from the predictions
rive a coupled system of two infinite sets of linear equations

. . are discussed in Sec. IV. The study is concluded with final
for the unknowns, which are then solved numerically. Anremarks in Sec. V
approximate expressiony/a=0.82170.36H2, was pro- C
vided by Peterst al. _for H<0.5. Norris anq Sheﬁ:galso. Il FORMULATION
presented an analytical approach for this configuration.
While the method also involves numerical computation, only ~ The duct terminations considered in this study include
a single set of equations needs to be solved for the moddl) a finite duct,(2) an extended duct from an infinite rigid
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wall, (3) a duct with bellmouth(4) a duct with annular uni- [F1{P}=pc[G]{V}, (6)
form cavity, and(5) a duct with annular step cavity. Assum-

ing plane wave propagation in the duct, the acoustic load'nere[F] and[G] are the coefficient matrices, ari@t} and
impedance of duct may be expressed as {V} are the vectors of sound pressure and outward normal

particle velocity at boundary nodes, respectively, is the
) characteristic impedance of the medium. The boundaries are
grouped into the inlet, opening and wall, represented by the
subscriptsi, o, andw, respectively. Equatio6) combined
with the rigid wall boundary condition yield%

. P :Zrcoskl)ﬂsin(kl)
" pcy, jz, sin(kl)+cogkl)’

wherep, and v, are the acoustic pressure and velocjtyis
the density,c is the speed of sound, is the equivalent
radiation impedance at the exitis the wave numbet,is the d . Ve

length of the duct, anglis the imaginary unit. Equatioft) {Pd] =pc[T ][Vd}, (for the ducj, (7)
may be rearranged to solve fdf as ° °

" cogkl)—jz,sin(kl) - @ Combining duct and cavity gives
The complex reflection coefficiemR at the exit of duct can p;’ ) Vid
then be expressed in terms Bf as pi =pc[T'] Vi 9
Z —
R=—|Rexp(—j2kd)= =" (3 Where

Z+1

d d
whereé is the inertial end correction of the duct. Thus, once {Pio}z{ P‘g], {Vio}zlxg],
Z, is determined, Eq(2) givesZ, and Eq.(3) the reflection 0 °
coefficient amplitudgR| and the inertial end correctioA  and

To evaluate the acoustic load impedaigehat accounts for

the multidimensional waves, particularly in the neighbor- [T]=
hood of duct exit, a subdomain boundary element approach

is developed, as described next.

T4 0
0 T¢

is the transfer impedance matrix between the inlet and open-
ing for the internal acoustic domain.

IIl. NUMERICAL APPROACH

To employ the boundary element method in determininds  External acoustic domain
the acoustic load impedance of the duct, the sound field is ] ]
first divided into the internal and the external acoustic do-  FOr the full-space external sound field, the boundary in-
mains separated by the opening surface. tegral expression is representeés

. . e
A. Internal acoustic domain Ce(x)pe(x)zf [G(X,Y) > (Y)
The internal domain may also be divided into several r n
subdomains. For the internal domain or each subdomain, the G
boundary integral expression is represehtecs —Pe(Y) %(X,Y)}dF(Y), (10
C(X)P(X)—f [G(X Y) aP(Y) P(Y) aG(X Y) [dI'(Y) 9
r " an an ’ ce(X)=1—f— ——|dI'(Y). (12)
(4) ron\4m7R

wherel is the boundary surface of the acoustic domaiis ~ Similar to the formulation of internal acoustics, discretiza-
the unit normal vector ol directed away from the domain, tion and numerical integration of E¢LO) lead to the follow-
the functionG(X,Y)=exp(—jkR)/4wR is Green’s function ing algebraic system of equations:

of free spaceR being the distance between any two poiXits —— e v e

andY in the domain or on the surface, a@{X) is a coef- [FEHP%}=pclGI{V: (12)
ficient which depends on the position of pokiand may be The boundaries are grouped into the opening and wall, rep-

evaluated! by resented by subscripts and w, respectively. Equatiofl2)
9l 1 combined with the rigid wall boundary condition yields
9= 7m ( 4wR) e, O Py =perTve, 13

A numerical solution of the boundary integral E¢) can be [T€] being the radiation impedance matrix for the external
achieved by discretizing the boundary surface of the domaiacoustic domain.
into a number of elements. By using discretization and nu-  For the external acoustic domain with duct extension
merical integration, the following algebraic system of equa-from an infinite rigid wall, the boundary integral equation
tions is obtainet! can be writteft* as
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wherel',, is the wall of extended duct from the infinite wall, =
', is the opening, e .
_exp(—ij)+exp(—ij1) 0.2 i
H™ 4anR 47R,
is the half-space Green'’s functioR; being the distance be- %% 05 10 15 20 25 3.0
tweenY and the image point oX with respect to the flange; H
and
(b)
a1 . ! -
e —_1_ | = FIG. 2. Unflanged finite duct(a) reflection coefficient andb) end correc-
cx)=1 J an (4#R)dF(Y)’ (15 tion.

I' being the total boundary of the duct extended from the
infinite wall. Similar to the full-space problem, the acoustic
radiation impedance matrikT®] for this case can be ob-
tained by using discretization and numerical integration of
Eq. (14). For the limiting case of no-extensida duct with
infinite rigid flange, the sound pressure at the opening may
be expressed as

o= [ [ 2 R Ta

>R on (Y) |dI'(Y). (16
Similarly, the acoustic radiation impedance mafri€] for l
the semi-infinite external acoustic domain can also be ob- BE——
tained by using discretization and numerical integration of
Eq. (16).

C. Coupling

At the opening, the solution should satisfy the continuity
conditions of sound pressure and particle velocity: | ! 10

{P}={Py}, a —

{Veh=—{Vq}. (18)

Combining Egs(9) and (13) with the continuity conditions
(17) and(18) yields the acoustic load impedance as (b)

o . ) e
Z= [Tlll_ T|12(T|22+ Te) TIZJJ (19) FIG. 3. Duct extended from an infinite rigid flange.
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FIG. 4. Duct extended from an infinite rigid flange) reflection coefficient

and(b) end correction.
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FIG. 5. Duct at an anglé extended from an infinite rigid flange.
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FIG. 6. Duct at an angl@=45° extended from an infinite rigid flangéa)
reflection coefficient anéb) end correction.

IV. RESULTS AND DISCUSSION

First, the effect of length of an unflanged finite duct
(Fig. 1) on the reflection coefficient and end correction is
examined. Figure 2 shows the numerical predictions of re-
flection coefficient and end correction for four different duct
lengths (/a=0.5,1.0,2.0,3.0 For a duct withl/a>2, the
results illustrate that the effect of duct length on these two
quantities becomes negligible in the regiontb& 3, and the
present predictions agree with the analytical results of Le-
vine and Schwingérfor the classical configuration of the
infinite duct without flange.

The effect of duct extensioh, from the infinite rigid
wall (Fig. 3) on the reflection coefficient and end correction
is shown in Fig. 4. The finite extension introduces an os-
cillatory behavior on both quantities as a functiontbfdue
to the presence of an infinite rigid wall. The period of oscil-
lations in H may be crudely(via a one-dimensional argu-
men) related to two subsequent quarter wave resonances be-
tween the duct opening and the infinite rigid wall leading to
AH=x/[(l.+ 6)/a]. As expected, the oscillatory behavior
diminishes ad./a becomes large. For the limiting case of
no-extensior(l./a=0, flanged dugt the present predictions
of the reflection coefficient and end correction are in good
agreement with the available literatuti@ayleigh® Daniell?
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FIG. 7. Unflanged ducts witd=30°,45°,60°,90°: Comparison &) reflec-

FIG. 8. Flanged ducts with,=0 and §=30°,45°,60°,90°: Comparison of
tion coefficient andb) end correction.

(a) reflection coefficient angb) end correction.

Nomura et al,> Kergomard and Garcid,and Norris and depict the computed results for these two quantities for five
Shend). The present predictions in Fig(b} for I,/a=0 different radii of curvature(r/a=0.5,1.0,2.0,3.0,4)0 and
agree very well with Fig. 7 of Nomurat al® to the degree  without and with an infinite flange, respectively. With
that the two sets of results cannot be distinguished from eacimcreasing radius of curvature, the reflection coefficient
other over G<H<3.0, including, for example, a specific decreases and the end correction increases. For the special
value of 6/a=0.821 forH=0.05. case ofr/a=4, the present predictions agree with the experi-
The predictions for the reflection coefficient and endmental results of Peterst al® who determineds/a=2.3 at
correction for a duct extension from an infinite rigid wall low values ofH. For this special case &t=0.025, for ex-
with an oblique angle of (Fig. 5 are shown in Fig. 6 for ample, the predicted numerical values a/@a=2.322 and
0=45°. Similar to the duct extension with 90° angle, the
oscillatory behavior is observed again. Figures 7 and 8 com-
pare the reflection coefficients and end corrections for, re-

spectively, the unflanged and flanged ducts Witk 0 and ,

6=30°,45°,60°,90°. At higher Helmholtz numbers ducts with

larger 6 provide, in general, higher reflection coefficients. In
(@) ©

view of the definition of§in Fig. 5, a reduction on the order

of radius may be anticipated fa=45° (relative to #=90°)

at low Helmholtz numbers as shown in Fig. 7. Note tHat

=<1.8 in Figs. 6-8 to remain below the first diametral mode

1.0, b R | Lt
The acoustic characteristics of a duct with bellmouth —m — —_—

(Fig. 9 are examined next to understand the effect of radius

of curvature on the reflection coefficient and end correction. (b) )

The latter is defined relative to the end of the straight section

of the duct, consistent with Petees al® Figures 10 and 11

FIG. 9. Ducts with unflanged and flanged bellmouth.
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FIG. 10. Duct with unflanged bellmoutlia) reflection coefficient andb) FIG. 11. Duct with flanged bellmouttia) reflection coefficient an¢b) end
end correction. correction.

) ) _ reflected from attached cavities with those radiated from the
6la=2.369 for Fig. 10b) and Fig. 11b), respectively. The gpening, it is important to note thét) the behavior of re-

differences in these configurations beyond the radiused inlgfection coefficient changes dramatically including the addi-
do not have a significant impact on the end correction fokjonal peaks, therefore the sound radiation may be sup-
bellmouth leads to much lower wave reflection at highefihe pressure wave reflections from the termination back to
curvature should be avoided, for example, at the exhaust exifavity, the step cavity moves the first additional peak to a
in order to promote effective pressure reflections from theyigher Helmholtz number, and the second peak to a lower
termination for noise control. Figure 12 shows the effect ofje|mnoltz number. The high reflection coefficient, in a spe-
end correction, transforming the dimensionless end corregsed to compensate the low attenuation in the corresponding
tion to (6—r)/a. Such manipulation essentially shifts the frequency region of a silencer, therefore an improved acous-
reference point for end correction to the very end of the ducfic attenuation performance may be obtained. Similar behav-

duct, Fig. 12 then suggests that a duct with a large-radiugave reflections from the opening, thereby providing mecha-
termination, such as/a=4, will appear to be shorter than pisms to manipulate engine tuning.

the actual total length when the end correction is incorpo-
rated.

Finally, ducts with annular cavitiegunflanged and V. CONCLUDING REMARKS
flanged are considered as shown in Fig. 13 with a constant  This study has shown the effect of duct termination ge-
cross section and Fig. 14 with a step transition. The comemetry on the reflection coefficient and the inertial end cor-
puted results for the reflection coefficient and the end correcrection by employing the subdomain boundary element ap-
tion are compared in Fig. 15 fég/c=4 andc/a=1/2. The proach. These two quantities were determined and analyzed
results with cavities here may be contrasted with the duct$or (1) an unflanged finite duct?) a duct extended from an
alone of Figs. 2 and 4. As a result of the interaction of wavesnfinite rigid wall, (3) a duct extended with an angtfrom
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tics to an infinite duct at low Helmholtz numbers. The duct
extension from an infinite rigid wall introduces an oscillatory
behavior in the reflection coefficient and end correction near
the baseline unflanged duct due to the interaction of waves
reflected from the infinite wall and those radiated from the
duct opening. Within about a diameter-distance from the

End correction, (6—1)a
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the literature for certain configuratiofsee, for example, Pe-
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excluded from the study. Instead, the current work has cha 0.0 I T ‘ '
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